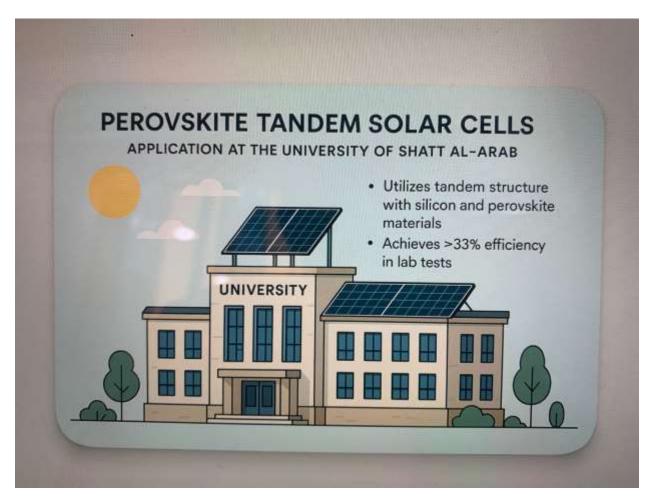
Shatt Al-Arab University

SDG



At the University of Shatt al-Arab, a solar energy system has been implemented to enhance sustainability and reduce reliance on traditional power sources. The system comprises **20 high-efficiency solar panels**, each rated at **8.8 kilowatts**, contributing to a total installed capacity of **176 kW**. Designed to optimize power generation in the region's abundant sunlight, this setup delivers a steady output of **35 amps**, supporting a variety of university operations.

This initiative reflects the university's commitment to renewable energy and environmental responsibility. By investing in solar infrastructure, the institution not only reduces its carbon footprint but also sets an example for sustainable development across academic campuses in Iraq.

The efficiency of a solar panel refers to how well it converts sunlight into usable electricity. For panels rated at **8.8 kW**, like those used at the University of Shatt al-Arab, the efficiency typically falls within the **20% to 22.8%** range, depending on the specific model and manufacturer.

For example, high-performance panels such as the **REC N-Peak 3** or **Maxeon 440W** models can reach up to **22.8% efficiency**, meaning nearly a quarter of the sunlight hitting the panel is converted into electrical energy. This level of efficiency is excellent for maximizing output in limited space—especially important in institutional settings where roof area may be constrained.

Solar panels come in several types, each with its own strengths depending on your needs, budget, and installation environment. Here's a breakdown of the main ones:

1. Monocrystalline Solar Panels

Efficiency: 20–25%Lifespan: 30–40 years

• **Key Advantage**: Highest efficiency and sleek black appearance

• **Best For**: Limited roof space or high energy demands

2. Polycrystalline Solar Panels

Efficiency: 18–21%
Lifespan: 25–30 years
Key Advantage: Lower cost

• **Best For**: Budget-conscious installations with ample space (Note: These are becoming less common and are no longer offered by many top installers)

3. Thin-Film Solar Panels

Efficiency: 17–19%Lifespan: 10–20 years

• **Key Advantage**: Lightweight and flexible

• **Best For**: Mobile homes, curved surfaces, or temporary setups

4. PERC (Passivated Emitter and Rear Contact) Panels

• **Efficiency**: Slightly higher than standard mono panels

• **Key Advantage**: Better performance in low light and high temperatures

• **Best For**: Hot climates or east/west-facing roofs

5. Solar Tiles (Building-Integrated Photovoltaics)

Efficiency: 10–20%Lifespan: 25–30 years

• **Key Advantage**: Aesthetic integration into rooftops

• **Best For**: New constructions or design-sensitive projects

6. **Perovskite Solar Panels** (Emerging Technology)

• **Efficiency**: Potentially 29–31%

• **Key Advantage**: High efficiency and low production cost

• Status: Not yet commercially available, but promising for the future

- Here's a visual guide to the **main types of solar panels**, perfect for understanding their differences at a glance:
- 1. Monocrystalline Solar Panels
- <u>Monocrystalline Solar Panel</u> *High efficiency, sleek black appearance, ideal for limited space*
- 2. Polycrystalline Solar Panels

• Polycrystalline Solar Panel

Lower cost, blue speckled look, slightly less efficient

- 3. Thin-Film Solar Panels
- Thin-Film Solar Panel
 Lightweight and flexible, best for unconventional surfaces
- Solar panel technology has seen some exciting breakthroughs in 2025, pushing the boundaries of efficiency, flexibility, and smart integration. Here are the standout innovations:
- 🔯 1. Perovskite Tandem Solar Cells
- These combine traditional silicon with perovskite materials to capture more of the solar spectrum. Lab tests have already hit 33%+ efficiency, far beyond standard panels. The challenge? Making them stable enough for real-world use—but progress is accelerating.
- \(\neq 2\). Bifacial Solar Panels
- These panels absorb sunlight from **both sides**, capturing reflected light from surfaces like rooftops or the ground. This can boost energy output by up to 30% in optimal conditions.
- 3. Smart Solar Panels with IoT
- New panels are being embedded with **Internet of Things (IoT)** tech, allowing real-time monitoring, predictive maintenance, and integration with smart grids.
- **4** Flexible & Lightweight Panels
- Thin-film and organic photovoltaic (OPV) panels are becoming more efficient and durable, making them ideal for **curved surfaces**, **vehicles**, **and portable applications**.
- **=** 5. Integrated Energy Storage
- Some systems now come with **built-in batteries**, streamlining installation and improving energy independence—especially useful for off-grid or backup power scenarios.
- Q 6. Transparent & Aesthetic Panels
- Solar glass and **transparent panels** are being used in windows and facades, turning buildings into power generators without compromising design.
- 7. TOPCon & HJT Technologies
- These next-gen silicon cell designs (Tunnel Oxide Passivated Contact and Heterojunction Technology) offer **higher efficiency and lower degradation**, making them strong contenders for commercial adoption.

